According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方特点并借助于MATHEMATICA软件,得到了应力函数双调和方
项式解
。
声明:以、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件
观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内
代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双程的特点并借助于MATHEMATICA软件,得到了应力函数双
程的多项式解
。
声明:以上例句、词类均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点助于MATHEMATICA软件,得到了应力函数双调和方程的多项式解
。
声明:以上例句、词性类均由互联网资源自动生
,
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了应力函数双调和方程的多。
:
上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据调和方程的特点并借助于MATHEMATICA软件,得到了应力函数
调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,内容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,得到了数双调和方程的多项式解
。
声明:以上例句、词性分类均网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
According to the nature of two-dimensional biharmonic equations,this paper obtains a polynomial solution of the biharmonic equation for stress function by means of the MATHEMATICA software.
根据二维双调和方程的特点并借助于MATHEMATICA软件,到了应力函数双调和方程的多项式解
。
声明:以上例句、词性分类均由互联网资生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。