We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的对射的证明,也
过在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的对射的证明,也
过在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
声明:以上例句、词均由互联网资源自动生成,部
未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且映成的数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审,
达内容亦不代
本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们心的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且映
的
数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自动,
分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的证明,也就是透过在两个集合一个对射(一对一且映成的
数)来证明它们的元素个数
。
明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是的证明,也就是透过在两
集合间建立一
(一
一且映成的
数)来证明它们的
数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主的是对射的证明,也就是透过在两个集合间建立一个对射(一对一且映
的
数)来证明它们的元素个数相等。
声明:以上例句、词性分类均由互联网资源自,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
们主要关心的是对射的证明,也就是透
在两个集合间建立一个对射(一对一且映成的
数)来证明它们的元素个数相等。
声明:以上例、词性分类均由互联网资源自动生成,部分
人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向
们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我们主要关心的是对射的,也就是透过在两个集合间建立
个对射(
对
成的
数)来
们的元素个数相等。
声:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
We will be concerned primarily with bijective proofs, i.e., showing that two sets have the same number of elements by exhibiting a bijection (one-to-one correspondence) between them.
我主要关心
是
射
证明,也就是透过在两个集合间建立
个
射(
且映成
数)来证明
元素个数相等。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我
指正。