One kind of inverse eigenvalue problems, whose solutions are required to be normal or diagonalizable matrices, is investigated in quaternionic quantum mechanics.
本文研究四元数量子力学中一类求其解是正规或可对角化四元数矩阵的特征值反问。
One kind of inverse eigenvalue problems, whose solutions are required to be normal or diagonalizable matrices, is investigated in quaternionic quantum mechanics.
本文研究四元数量子力学中一类求其解是正规或可对角化四元数矩阵的特征值反问。
This paper discusses the structure, calculation of multiplication and power, eigenvalue and eigenvector, and diagonalizable problems of matrix of rank equal to 1.
对秩等于1的矩阵的结构、乘法与乘幂运、特征值与特征向量和对角化问进行。
Each eigenstate of an observable corresponds to an eigenvector of the operator, and the associated eigenvalue corresponds to the value of the observable in that eigenstate.
每个可见特征值符合操作者一特征向量,而相关的特征值符合特征值里的可见值。
In the practical applications of highly nonnormal matrices, these theorems may be more useful than their generalized eigenvalue special cases and may provide more descriptive information.
在对高度非正规矩阵的研究应用中,这些定理将比它们的特例-广义特征值定理更可靠,能提供更多的信息。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问,欢迎向我们指正。